z/0S

DCE

Application Development Guide:
Core Components

000000000000

z/0S

DCE

Application Development Guide:
Core Components

000000000000

Note

Before using this information and the product it supports, be sure to read the general information under|Appendix C, “Notices’|
on page 553

First Edition (March 2001)

This edition, SC24-5905-00, applies to Version 1 Release 1 of zZOS DCE Base Services, z/OS DCE user Data Privacy (DES and
CDMF), z/OS DCE User Data Privacy (CDMF) (program number 5694-A01), and to all subsequent releases and modifications until
otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for reader's comments may be provided at the back of this publication, or you may address
your comments to the following address:

International Business Machines Corporation
Information Development, Dept. G60

1701 North Street

Endicott, NY 13760-5553

United States of America

FAX (United States & Canada): 1+607+752-2327
FAX (Other Countries):
Your International Access Code +1+607+752-2327

IBMLink™ (United States customers only): GDLVME(PUBRCF)
Internet e-mail: pubrcf@vnet.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
 Title and order number of this book
¢ Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use the information in any way it believes appropriate
without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

The following statements are provided by the Open Software Foundation.

The information contained within this document is subject to change without notice.

OSF MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

OSF shall not be liable for errors contained herein, or for any direct or indirect, incidental, special or consequential damages in
connection with the furnishing, performance, or use of this material.

Copyright © 1993, 1994 Open Software Foundation, Inc.
This documentation and the software to which it relates are derived in part from materials supplied by the following:

e © Copyright 1990, 1991 Digital Equipment Corporation

e © Copyright 1990, 1991 Hewlett-Packard Company

e © Copyright 1989, 1990, 1991 Transarc Corporation

e © Copyright 1990, 1991 Siemens Nixdorf Informationssysteme AG

¢ © Copyright 1990, 1991 International Business Machines Corporation
e © Copyright 1988, 1989 Massachusetts Institute of Technology

e © Copyright 1988, 1989 The Regents of the University of California

All Rights Reserved.
Printed in the U.S.A.

THIS DOCUMENT AND THE SOFTWARE DESCRIBED HEREIN ARE FURNISHED UNDER A LICENSE, AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. TITLE
TO AND OWNERSHIP OF THE DOCUMENT AND SOFTWARE REMAIN WITH OSF OR ITS LICENSORS.

Open Software Foundation, OSF, the OSF logo, OSF/1, OSF/Motif, and Motif are trademarks of the Open Software
Foundation, Inc.

UNIX is a registered trademark of The Open Group in the United States and other countries.

DEC, DIGITAL, and ULTRIX are registered trademarks of Digital Equipment Corporation.

DECstation 3100 and DECnet are trademarks of Digital Equipment Corporation.

HP, Hewlett-Packard, and LaserJet are trademarks of Hewlett-Packard Company.

Network Computing System and PasswdEtc are registered trademarks of Hewlett-Packard Company.

AFS and Transarc are registered trademarks of the Transarc Corporation.

Episode is a trademark of the Transarc Corporation.

Ethernet is a registered trademark of Xerox Corporation.

DIR-X is a trademark of Siemens Nixdorf Informationssysteme AG.

MX300i is a trademark of Siemens Nixdorf Informationssysteme AG.

NFS, Network File System, SunOS and Sun Microsystems are trademarks of Sun Microsystems, Inc.

X/Open is a trademark of The Open Group in the U.K. and other countries.

PostScript is a trademark of Adobe Systems Incorporated.
FOR U.S. GOVERNMENT CUSTOMERS REGARDING THIS DOCUMENTATION AND THE ASSOCIATED SOFTWARE
These notices shall be marked on any reproduction of this data, in whole or in part.

NOTICE: Notwithstanding any other lease or license that may pertain to, or accompany the delivery of, this computer software,
the rights of the Government regarding its use, reproduction and disclosure are as set forth in Section 52.227-19 of the FARS
Computer Software-Restricted Rights clause.

RESTRICTED RIGHTS NOTICE: Use, duplication, or disclosure by the Government is subject to the restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013.

RESTRICTED RIGHTS LEGEND: Use, duplication or disclosure by the Government is subject to restrictions as set forth in
paragraph (b)(3)(B) of the rights in Technical Data and Computer Software clause in DAR 7-104.9(a). This computer software is
submitted with "restricted rights." Use, duplication or disclosure is subject to the restrictions as set forth in NASA FAR SUP
18-52.227-79 (April 1985) "Commercial Computer Software-Restricted Rights (April 1985)." If the contract contains the Clause at
18-52.227-74 "Rights in Data General" then the "Alternate Ill" clause applies.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP Schedule Contract.
Unpublished—All rights reserved under the Copyright Laws of the United States.

This notice shall be marked on any reproduction of this data, in whole or in part.

iV Application Development Guide: Core Components

Contents

About This Book e XXiii
Who Should Use This Book XXiii
DCE Application Development Environment xXiii
Unsupported OSF DCE Functions XXiv
How This Book Is Organized e XXV
Terminology Used in This Book e XXVi
Conventions Used in This Book XXVii
Where to Find More Information XXViii
Softcopy Publications XXViii
Internet Sources L XXViii
Using LookAt to Look up Message Explanations XXViii
Accessing Licensed Books onthe Web XXiX
Chapter 1. Introduction to DCE Facilities 3
Chapter 2. DCE Host Services 5
Types of Applications e 5
Issues of Distributed Applications L 6
Managing a Host's Endpoint Map 6
Binding to the dced Services 7
Host Service Naming in Applications 8
The dced Maintains Entry Lists 8
Reading All of a Host Service's Data 10
Managing Individual dced Entries 11
Managing Host Data on a Remote Host 14
Kinds of Host Data Stored 14
Adding New Host Data 15
Modifying Host Data 16
Running Programs Automatically When Host Data Changes 16
Controlling Servers Remotely 18
Two States of Server Management: Configuration and Execution 19
Configuring Servers e 19
Starting and Stopping Servers 21
Enabling and Disabling Services of a Server 22
Validating the Security Server 23
Managing Server Key Tables 23
Chapter 3. The DCE Backing Store 27
Datain a Backing Store 27
Using A Backing Store 27
Header for Data 27
The User Interface 28
The IDL Encoding Services 29
Encoding and Decoding in the Backing Store 29
Conformant Arrays Not Allowed 29
The Backing Store Routines e 30
Opening a Backing Store 30
Closing a Backing Store 30
Storing or Retrieving Data 31
Freeing Data 31

© Copyright IBM Corp. 1994, 2001 \"

Making or Retrieving Headers 31

Performing lteration 31
Deleting Items from a Backing Store 32
Locking and Unlocking a Backing Store 32
Example of Backing Store Use 32
Chapter 4. Developing a Simple RPC Application 39
The Remote Procedure Call Model 39
RPC Application Code e 40
StUbs . . . 41
The RPC Runtime 42
RPC Application Components Working Together 43
Overview of DCE RPC Development Tasks 44
Writing an Interface Definition 45
RPC Interfaces Represent Services L 46
Generating an Interface UUID e 48
Naming the Interface 48
Specifying Interface Attributes L 49
Import Declarations 49
Constant Declarations 49
Type Declarations 49
Operation Declarations L 50
Running the IDL Compiler 51
Writing the Client Code e 51
Writing the Server Code e 53
The greet_server.c Source Code 53
The greet_manager.c Source Code 56
Building the greet Programs L 56
Running the greet Programs 57
Chapter 5. RPC Fundamentals 59
Direct Implications of Remoteness, 59
Universal Unique Identifiers 60
Communications Protocols 60
Binding Information 61
Server Binding Information 62
Defining a Compatible Server 63
How Clients Obtain Server Binding Information 64
Client Binding Information for Servers 66
Endpoints e 67
Well-Known Endpoints 67
Dynamic Endpoints e 67
Run time Semantics 68
Communications Failures 70
Scalability e 70
RPC Objects e 71
Chapter 6. Basic RPC Routine Usage 73
Overview of the Basic RPC Runtime Routines 73
Server Initialization Using the RPC Routines 75
Assigning Types to Objects 76
Registering Interfaces 77
Selecting RPC Protocol Sequences 78
Obtaining a List of Server Binding Handles 79

Vi Application Development Guide: Core Components

Registering Endpoints 79

Making Binding Information Accessible to Clients 79
Listening for Calls 81
How Clients Find Servers e 81
Searching a Namespace 82
Using String Bindings to Obtain Binding Information 83
Chapter 7. RPC and Other DCE Components 85
Threads in RPC Applications 85
RPC Threads e 87
Cancel Operations 88
Multithreaded RPC Applications 89
Security and RPC: Using Authenticated RPC 91
Authentication 91
Authorization L 93
Authenticated RPC Routines 94
Directory Services and RPC: Using the Namespace 96
NSI Directory Service Entries 96
Strategies for Using Directory Service Entries 114
The Service Model for Defining Servers 117
The Resource Model for Defining Servers 121
Chapter 8. DCE Data Representation Support Considerations 129
The DCE Model 129
Data Type Considerations for Users 130
Floating-Point Data 131
Integer Data 131
Character Data 131
Double-Byte Character Data 136
Internationalization Considerations for DCE Applications 136
Code Page Considerations 138
Homogeneous Code Page Considerations 139
Heterogeneous Code Page Considerations, 139
DCE-specific Considerations 139
Code Page Restrictions 139
Client Application Data Considerations 140
Chapter 9. Writing Internationalized RPC Applications 143
Character Sets, Code Sets, and Code Set Conversion 143
Remote Procedure Call with Character/Code Set Interoperability 144
Building an Application for Character and Code Set Interoperability 147
Writing the Interface Definition File 148
Writing the Attribute Configuration File 149
Writing the Stub Support Routines 150
Writing the Server Code 153
Writing the Client Code 159
Writing the Evaluation Routine 163
Chapter 10. Topics in RPC Application Development 173
Memory Management L 173
Using the Memory Management Defaults 174
Using rpc_ss_allocate and rpc_ss_free 174
Using Your Own Allocation and Free Routines 175
Using Thread Handles in Memory Management 176

Contents Vi

Guidelines for Error Handling 176

Exceptions 177
The fault_status Attribute 178
The comm_status Attribute 178
Determining Which Method to Use for Handling Exceptions 178
Examples of Error Handling 179
Context Handles e 180
Context Handles in the Interface 181
Context Handles in a Server Manager 182
Context Rundown 190
Binding and Security Informationo 191
Pipes . . e 192
Input Pipes 192
Output Pipes e 194
Pipe Summary 197
Nested Calls and Callbacks 197
Routing Remote Procedure Calls 199
Obtaining an Endpoint 200
Buffering Call Requests 205
Queuing Incoming Calls 206
Dynamic Executor Threads 208
Selecting a Manager 209
Creating Portable Data Using the IDL Encoding Services 211
Memory Management for IDL Encoding Services o 212
Buffering Styles 212
IDL Encoding Services Handles 213
Programming Example 214
Performing Multiple Operations on a Single Handle 219
Determining the Identity of an Encoding 219
Chapter 11. Interface Definition Language 221
The Interface Definition Language File 221
Syntax Notation Conventions 221
Typography 221
Special Symbols 222
IDL Lexical Elements 222
Identifiers L 222
Keywords e 222
Punctuation Characters 222
White Space 223
Case Sensitivity 223
IDLversus C e 223
Declarations e 224
Data Types 224
Attributes . . . L L 224
Interface Definition Structure 224
Interface Definition Header 224
Interface Definition Body 225
Overview of IDL Attributes 225
Interface Definition Header Attributes 226
The uuid Attribute 226
The version Attribute 226
The endpoint Attribute 227
The exceptions Attribute 228

viii Application Development Guide: Core Components

The pointer_default Attribute 229

The local Attribute 229
Rules for Using Interface Definition Header Attributes 229
Examples of Interface Definition Header Attributes 230
Import Declarations 230
Constant Declarations 230
Integer Constants 231
Boolean Constants e 231
Character Constants 231
String Constants 231
NULL Constants 232
Type Declarations 232
Type Attributes 232
Base Type Specifiers 232
Constructed Type Specifiers 234
Predefined Type Specifiers 234
Type Declarator 234
Operation Declarations 234
Operation Attributes 235
Operation Attributes: idempotent, broadcast, and maybe 235
Operation Attributes: Memory Management 236
Parameter Declarations 236
Basic Data Types 237
Integer Types 237
Floating-Point Types 238
The char Type 238
The boolean Type 238
The byte Type 239
The void Type 239
The handle_t Type 239
The error_status_t Type 239
International Characters 240
Constructed Data Types 240
Structures 240
UNIONS e 241
Enumerations 244
Pipes . . . 244
AITays . . L 247
SINGS . . . 253
Pointers 254
Customized Handles 267
Context Handles 268
Associating a Data Type with a Transmitted Type 273
IDL Grammar SynopsiS 275
Chapter 12. Attribute Configuration Language 285
Syntax Notation Conventions 285
Attribute Configuration File (ACF) e 285
Naming the ACF 285
Compiling the ACF e 286
ACF Features 286
Structure 286
ACF Interface Header 287
ACF Interface Body 287

Contents iX

The include Statement o 288

The auto_handle Attribute 288
The explicit_handle Attribute 289
The implicit_handle Attribute 290
The comm_status and fault_status Attributeso 291
The code and nocode Attributes 292
The represent_as Attribute 293
The enable_allocate Attribute 294
The heap Attribute 295
The extern_exceptions Attribute 296
The encode and decode Attributes 296
The cs_char Attribute 298
The cs_stag, cs_drtag, and cs_rtag Attributes 302
The cs_tag_rtn Attribute 303
The binding_callout Attribute 305
Summary of Attributes L 306
ACF Grammar Synopsis 306
Chapter 13. Introduction to Multithreaded Programming, .. 315
Advantages of Using Threads e 315
Software Models for Multithreaded Programming 315
Boss/Worker Model e 316
Work Crew Model 316
Pipelining Model 316
Combinations of Models 317
Potential Disadvantages with Multithreaded Programming 317
Chapter 14. Thread Concepts and Operations 319
Thread Operations e 319
Starting a Thread 319
Terminating a Thread e 319
Waiting for a Thread to Terminate 320
Deleting a Thread 320
New Primitives 321
Attributes Objects 321
Creating an Attributes Object 321
Deleting an Attributes Object 321
Thread Attributes 322
Mutex Attributes 323
Condition Variable Attributes 323
Synchronization Objects 323
Mutexes e 323
Condition Variables 325
Other Synchronization Methods 327
One-Time Initialization Routines 327
Thread-Specific Data 327
Thread Cancelation e 328
Thread Scheduling e 329
Chapter 15. Programming with Threads 331
Using Signals 331
Types of Signals 331
DCE Threads Signal Handling 332
Alternatives to Using Signals L 333

X Application Development Guide: Core Components

Nonthreaded Libraries 333

Working with Nonthreaded Software 334
Changing Nonthreaded Code to Be Thread-Reentrant 334
Avoiding Nonreentrant Software 334
Global Lock e 335
Thread-Specific Storage 335
Using Synchronization Objects 335
Race Conditions L 335
Deadlocks 336
Signaling a Condition Variable 336
Chapter 16. Using the DCE Threads Exception-Returning Interface 337
Syntax for C 337
Using the Exception-Returning Interface 339
Operations on Exceptions 339
Declaring and Initializing an Exception Object 340
Raising an Exception 340
Defining a Region of Code over Which Exceptions Are Caught 340
Catching a Particular Exception or All Exceptions 340
Defining Epilog Actions fora Block 341
Importing a System-Defined Error Status into the Program as an Exception 341
Rules and Conventions for Modular Use of Exceptions 342
DCE Threads Exceptions and Definitions 343
z/OS ABENDs Caught as Exceptions e 344
Catching Specific System or User ABENDs 346
Detecting the First Catch of an Exception 346
Handling Unexpected Exceptions 347
Chapter 17. DCE Threads Example 349
Details of Program Logic and Implementation Lo 349
Threads Example — Searching for Prime Numbers 351
Chapter 18. Comparing POSIX Multithreading to z/OS Multitasking 357
Types of Threads e 358
Choosing the Type of Thread 359
Chapter 19. Migrating between UNIX System Services and DCE Threads 361
Differences between UNIX System Services and DCE Threads 361
Choosing DCE or UNIX System Services Threads 362
MULEXeS 362
Differences between DCE Threads and UNIX System Services Threads 362
Changes to Threads APIs 363
Specifying Attributes Objects 363
Call Attributes Not Supported by UNIX System Services Threads 363
Types Not Supported by UNIX System Services Threads 364
Mutex Types 364
Cancelability Versus Interruptibility 364
Semantic Differences 364
Miscellaneous Differences L 365
Chapter 20. Introduction to the Distributed Time Service APl 369
DTS Time Representation 369
Absolute Time Representation L 369
Relative Time Representation 372

Contents XI

Time Structures 373

The utc Structure 374
The tm Structure 375
The timespec Structure 375
The reltimespec Structure 376
DTS APl Header Files 376
DTS API Routine Functions 376
Chapter 21. Time-Provider Interface 379
General TPI Control Flow 379
ContactProvider Procedure 381
ServerRequestProviderTime Procedure L 382
Time-Provider Process IDL File 382
Initializing the Time-Provider Process 386
Time-Provider Algorithm 388
DTS Synchronization Algorithm 389
Running the Time-Provider Process 389
Running a User-Written Time Provider Program 389
Sources of Additional Information 390
Chapter 22. DTS API Routines Programming Example 391
Chapter 23. Overview of Security 399
Purpose and Organization of Security Section 399
About Authenticated RPC 400
About the Generic Security Service APl 400
What Authentication and Authorization Mean 400
RACF Authorization using RACF-DCE Interoperability 401
Authentication, Authorization, and Data Protection in Brief 401
Summary of DCE Security Services and Facilities 403
Security Services 403
Security Facilities 404
Interfaces to the Login Facility 405
Interfaces to the Extended Registry Attribute Facility 405
Interfaces to the Extended Privilege Attribute Facility 405
Interfaces to the Key Management Facility 405
Interfaces to the ID Map Facility 405
Interfaces to the Access Control List Facility 406
Interfaces to the Password Management Facility 406
Interfaces to RACF-DCE Interoperability 406
Relationships Between the Security Service and DCE Applications 407
DTS, the Cell Namespace, and Security 407
Time and Security 407
The Cell Namespace and the Security Namespace 408
Using DCE Three Different Ways 408
Using the DCE Security Services DLL 409
Chapter 24. Authentication 413
Background Concepts 413
Principals e 413
Cellsand Realms 414
The Shared-Secret Authentication Protocol 414
Protection Levels 414
Data Encryption Mechanisms 415

Xii Application Development Guide: Core Components

A Walkthrough of the Shared Secret Authentication Protocol 415

A Walkthrough of User Authentication 416
A Walkthrough of DCE Application Authentication 425
A Walkthrough of DCE Application Authentication Using GSSAPI 430
Intercell Authentication L 433
Authentication Service Surrogates 433
Intercell Authentication by Trust Peers 434
Chapter 25. Authorization 435
DCE Authorization 435
Object Types and ACL Types 435
ACL Manager TYPeS o 436
ACLS . . . 437
ACL Entries 437
Access Checking e 440
Examples of ACL Checking 444
Name-Based Authorization 446
Chapter 26. GSSAPI Credentials 447
Using Default Credentials 447
Initiate a Security Context L 448
Accept a Security Context L 448
Creating New Credential Handles 448
Initiating a Security Context with New Credential Handles 448
Accepting a Security Context Using New Credential Handles 448
Delegating Credentials 449
Initiating a Security Context to Delegate Credentials 449
Accepting a Security Context with Delegated Credentials 449
Chapter 27. The Extended Privilege Attribute Application Program Interface 451
Identities of Principals in Delegation 451
ACL Entry Types for Delegation 452
ACL Checking for Delegation 453
Calls to Establish Delegation Chains 453
Types of Delegation 453
Target and Delegate Restrictions 454
Optional and Required Restrictions 455
Compatibility between z/OS and Pre-OS/390® Servers and Clients 455
Calls to Extract Privilege Attribute Information oo 456
Opaque Handles for sec_cred Calls 456
Disabling Delegation 457
Setting Extended Attributes 457
Chapter 28. The Registry Application Program Interface 459
Binding to a Registry Site 459
The Registry Database 460
Creating and Maintaining PGO ltems 460
Creating and Maintaining Accounts 461
Registry Properties and Policies 462
Routines to Return UNIX Structures 463
Miscellaneous Registry Routines 463
Chapter 29. The Extended Attribute Application Program Interfaces 465
Extended Registry Attribute APl 465

Contents Xiii

Attribute Schema 466

Attribute Types and Instances 466
Attribute Type Components L 466
Calls to Manipulate Schema Entries 471
The sec_attr_schema_entry_ t Data Type 471
Creating and Managing Schema Entries 472
Reading Schema Entries 474
Reading the ACL Manager Types e 475
Calls to Manipulate Attribute Instances 475
The sec_attr_t Data Type 476
Creating and Managing Attribute Instances 476
Reading Attribute Instances 477
Searching for Attribute Instances 479
The Attribute Trigger Facility 481
Defining an Attribute Trigger/Attribute Association 481
Trigger Binding 482
Access Control on Attributes with Triggers 483
Calls that Access Attribute Triggers 484
Using sec_attr_trig_cursor_t with sec_attr_trig_query() 484
sec_rgy_attr_trig_query() and sec_rgy_attr_trig_update() L 484
priv_attr_trig_query() 484
The DCE Attribute APl e 485
Macros to Aid Extended Attribute Programming 486
Macros to Access Binding Fields 486
Macros to Access Schema Entry Fields 487
Macros to Access Attribute Instance Fields L 488
Binding Data Structure Size Calculation Macros 490
Schema Entry Data Structure Size Calculation Macros 490
Attribute Instance Data Structure Size Calculation Macros 490
Binding Semantic Check Macros 491
Schema Entry Semantic Check Macros 492
Attribute Instance Semantic Check Macros 492
Schema Entry Flag Set and Unset Macros 492
Schema Trigger Entry Flag Check Macros 493
Utilities to Use with Extended Attribute Calls 493
Chapter 30. The Login Application Program Interface 495
Establishing Login Contexts 495
Validating the Login Context and Certifying the Security Server 496
Validating the Login Context Without Certifying the Security Server 496
Example of a System Login Program 497
Establishing the Initial Context 497
Handling Expired Certificates of Identity 497
Importing and Exporting Contexts 498
Changing a Groupset 499
Miscellaneous Login APl Functions 499
Getting the Current Context 500
Getting Information from a Login Context 500
Getting Group Information for Local Process Identities 500
Releasing and Deleting a Context 500
Chapter 31. The Key Management Application Program Interface 501
Retrieving a Key 501
Changinga Key 502

XiVv Application Development Guide: Core Components

Automatic Key Management 502

Deleting Expired Keys e 503
Deleting a Compromised Key 503
Chapter 32. The Access Control List Application Program Interfaces 505
The Client-Side APl e 506
Bindingto an ACL 506
ACL Editors and Browsers 506
Testing ACCESS 507
Errors . e 507
Guidelines for Constructing ACL Managers 507
Extended Naming of Protected Objects 508
The ACL Network Interface 509
The ACL Library 509
Chapter 33. The ID Map Application Program Interface, .. 515
Chapter 34. DCE Audit Service 517
Features of the DCE Audit Service 517
Components of DCE Audit Service 517
DCE Audit Service Concepts 517
Audit Clients 518
Code Point 518
Events . . . 518
Event Class 520
Event Class Number 520
Filters . . e 520
Audit Records 521
Audit Trail File 521
Administration and Programming in DCE Audit 521
Programmer Tasks 522
Administrator Tasks 523
Chapter 35. Using the Audit APl Routines 525
Adding Audit Capability to Distributed Applications 525
Opening the Audit Trail 525
Initializing the Audit Records 526
Adding Event-Specific Information 527
Committing an Audit Record 527
Closing an Audit Trail File 528
Writing Audit Trail Analysis and Examination Tools 528
Opening an Audit Trail File for Reading 528
Reading the Desired Audit Records into a Buffer 528
Transforming the Audit Record into Readable Text 529
Discarding the Audit Record L 530
Closing the Audit Trail File 530
Chapter 36. The Password Management Application Programming Interfaces 531
The Client-Side APl 532
Example of a Password Change Program 532
The Password Management Network Interface 533
Chapter 37. RACF-DCE Interoperability Application Programming Interfaces 535
DCE APIs e 535

Contents XV

Z/OS APIS . o 535

Appendix A. POSIX-based DCE Portable Character Set 537
Appendix B. IBM Code Pages 541
Code Page IBM-1027 e 541
Code Page IBM-1047 e 542
Code Page IBM-037 e 543
Code Page IBM-273 544
Code Page IBM-277 e 545
Code Page IBM-278 546
Code Page IBM-280 547
Code Page IBM-284 548
Code Page IBM-285 549
Code Page IBM-297 e 550
Code Page IBM-500 551
Code Page IBM-871 552
Appendix C. Notices 553
Trademarks 554
Glossary 557
Bibliography 577
z/OS DCE Publications e 577
z/OS SecureWay® Security Server Publications 577
Tool Control Language Publication 578
IBM C/C++ Language Publication 578
z/OS DCE Application Support Publications 578
Encina Publications 579
Index 581

XVi Application Development Guide: Core Components

Figures

©ONO O AN~

The dced Entry Lists e 9
Structure of an Entry e 9
Accessing Host Data 12
The Parts of an RPC Application 41
Marshalling and Unmarshalling Between ASCIl and EBCDIC Data 42
Interrelationships During a Remote Procedure Call 43
Generating Stubs L 44
Building a Simple Client and Server 45
GREET Interface Definition 47
Role of RPC Interfaces 47
ABInding . .. 61
Information Used to Identify a Compatible Server L 64
Client Binding Information Resulting from a Remote Procedure Call 66
Types of Managers 77
Exporting Server Binding Information 80
Importing Server Binding Information 82
Local Application Thread During a Procedure Call 86
Server Application Thread and Multiple Call Threads 86
Phases of an RPC Thread 87
Concurrent Call Threads Running in Shared Address Space 88
Phases of a Cancel inan RPC Thread 89
A Multithreaded RPC Application Acting as Both Server and Client 90
NSI Attributes 97
Parts of a Global Name 99
Possible Information in a Server Entry 100
Possible Mappings of a Group 101
Possible Mappings of a Profile 103
Import and Lookup Search Algorithm within a Single Entry 109
Priorities Assigned on Proximity of Members oo Lo 116
Service Model: Interchangeable Instances on Two Hosts 118
Service Model: Interchangeable Instances on One Host 119
Service Model: Distinct Instances on One Host 121
Resource Model: A System-Specific Application 124
Resource Model: A Single Server Entry for Each Server 125
Resource Model: A Separate Server Entry for Each Object 126
The DCE Model for Handling Multiple Code Pages 130
How SAA Latin-1 Characters are Used in DCE 132
Code Page Conversions e 133
Restriction on DCE Client Code Set 140
Phases of a Nested RPC 198
Phases of a Nested RPC to a Client Address Space 198
Steps in Routing Remote Procedure Calls 200
Mapping Information and Corresponding Endpoint Map Elements 201
Decisions for Looking Up an Endpoint 203
A Request Buffer at Full Capacity 206
Stages of Call Routing by a Server Process 207
Decisions for Selecting a Manager 211
string_tree.idl Source 262
string_tree_client.c Source 263
string_tree_manager.c Source 265

© Copyright IBM Corp. 1994, 2001 Xvii

51.
52.
53.
54,
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.

Xviii

string_tree_server.c Source
string_tree output L
Example of an IDL File That Uses a Context Handle
Example of a Context Rundown Procedure
Work Crew Model e
Pipelining Model
Thread State Transitions
Only One Thread Can Lock a Mutex
Thread A Waits on Condition Ready, Then Wakes Up and Proceeds
Thread B Signals Condition Ready
Syntax for Handling Exceptions
Using the RERAISE Statement
Example of a FINALLY statement
Catching a Particular Exception
An Example of an Invariant Action
Coding Example: Setting z/OS S806 ABEND to be an Exception, ..
Detecting the First Catch of an Exception
Threads Example Searching
Threading Model Overview e
ISO Format for Time Displays
Changed ISO Format acceptable as Input, .
Full Syntax for a Relative Time
Time Period Data Element Syntax
tm Structure Declaration
timespec Structure Declaration
reltimespec Structure Declaration
DTS API Routines Shown by Functional Grouping
DTS Time-Provider RPC Calling Sequence
Time Service Provider Interface
Initializing the Time-Provider Process
An Example of a DTS Program
Shared-Secret Authentication and DCE Authorization in Brief
DCE Security and the DCE Application Environment
Representational Conventions Used in Authentication Walkthrough lllustrations
Client Acquires Ticket-Granting Ticket Using Third-Party Protocol
Client Acquires Ticket-Granting Ticket Using the OSF DCE 1.0 Protocol
Client Acquires Privilege-Ticket-Granting Ticket
Client Sets Authentication and Authorization Information
Client Principal Makes Application Request
Application Server Challenges Client
Application Server Responds to Client's Request
Peer Applications Establish a Security Context
Derivation of ACL Defaults
Pseudocode to lllustrate the user_obj Entry Check
Pseudocode for the foreign_user check
Pseudocode for Checking Group Entries
Pseudocode to Check the other_object Entry
Pseudocode to Check the foreign_other Entries
Pseudocode to Check the any_other Entry,
The sec_attr_schema_entry_t Data Type
The sec_attr_t Data Type
The sec_attr_bind_info_t Data Type
Example of a System Login Program from a Privileged UserID
An Example of Handling Expired Certificates of Identity

Application Development Guide: Core Components

105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.

Removing Groups from Their Groupsets 499
ACL Program Interfaces 505
Protection with Extended Naming L 508
Event Number Formats 519
Overview of the DCE Audit Service 524
Usage of Password Management Facility APIs 531
Code Page IBM-1027 e 541
Code Page IBM-1047 e 542
Code Page IBM-037 543
Code Page IBM-273 544
Code Page IBM-277 e 545
Code Page IBM-278 e 546
Code Page IBM-280 547
Code Page IBM-284 548
Code Page IBM-285 549
Code Page IBM-297 e 550
Code Page IBM-500 551
Code Page IBM-871 552

Figures Xix

XX Application Development Guide: Core Components

Tables

©ONO O AN~

API Routines for Remote Server Management L L 19
Basic Tasks of an RPC Application 40
Run time Semantics 68
Basic Runtime Routines 74
SAA Variant Characters 132
Variant Characters — Code Point Representation 134
Locales supported by zZZOS DCE 135
Tasks of an Internationalized RPC Application 144
IDL Attributes 225
Base Data Type Specifiers 232
Backus-Naur Format for the Interface Definition Language 275
Cross Reference of the Backus-Naur Format for the Interface Definition Language 282
Summary of the ACF Attributes 306
Backus-Naur Format for the Attribute Configuration File Language 306
Cross Reference of the Backus-Naur Format for the Attribute Configuration File Language . . 309
DCE Threads Exceptions 343
z/OS ABENDs Mapped as OSF Portable Exceptions 345
Exception Dump Scenarios 348
Reasons for Using DCE or UNIX System Services Threads 361
Absolute Time Structures L 374
Relative Time Structures 374
Credential Types e 447
Encodings and Required Data Types 473
POSIX 1003.2 Portable Character Set (without Control Characters) 537

© Copyright IBM Corp. 1994, 2001 XXi

XXii Application Development Guide: Core Components

About This Book

The objective of this book is to assist you in designing, writing, compiling, linking, and running distributed
applications on the IBM z/OS operating system using z/OS DCE. The steps to develop a distributed
application using DCE services and application programming interfaces (API) are described in progressive
detail. Also discussed are the development decisions and tools that you need to consider when
developing your distributed application using z/OS DCE.

To create DCE applications that access IMS™ or CICS® transactions, refer to [zZ0S DCE Application|
|Support Programming Guide,

Who Should Use This Book

This book assumes you are an experienced application developer or programmer with a working
knowledge of the C programming language and the z/OS operating system. You do not have to possess
prior knowledge of, or experience with, designing and writing distributed applications using the Open
Software Foundation (OSF) Distributed Computing Environment (DCE) services and APIs.

Ideally, you should be able to:

¢ Allocate z/OS data sets

» Edit, browse, and copy z/OS data sets and associated members
¢ Print data sets

¢ Write and submit batch jobs on z/OS

¢ Write, compile, link, and run C/C++ programs on z/OS

¢ Write and understand JCL to run on z/OS

¢ Understand Shell and TSO/E commands.

A good working knowledge and understanding of the following would be helpful:

¢ Interactive System Productivity Facility/Program Development Facility (ISPF/PDF)
¢ Concepts behind a distributed application
¢ Using the Spool Display and Search Facility (SDSF) to check on the status of your application.

Some exposure to the UNIX or AIX® operating system is helpful but not essential to use this book.

You should be familiar with the concepts of the Distributed Computing Environment. If you are not, read
|z/0S DCE Introductior

DCE Application Development Environment

It is conceivable that you may develop your DCE applications on a platform other than the z/OS operating
system. Perhaps you may prefer to work on a UNIX-based workstation or a proprietary operating system.
If your goal is to ultimately run either the client or server portion of your DCE application on z/OS, ensure
that portion of your DCE application conforms to all recommendations contained in this book.

This book describes the development steps assuming you are developing your DCE applications on the
z/OS operating system. If you are developing DCE applications on the z/OS platform that are targeted to
run on another platform, consult the DCE application development documentation associated with that
platform.

© Copyright IBM Corp. 1994, 2001 xxiii

Unsupported OSF DCE Functions

The following DCE technology functions, which may be available in the Distributed Computing
Environment product from OSF or on DCE offerings from other vendors, are not supported in z/OS DCE:

¢ DCE Directory Services

— X/Open Data Services (XDS) function (Global Directory Service (GDS) portion)
— X/Open OSI-Abstract-Data Manipulation (XOM) function (GDS portion)
— Gilobal Directory

On z/OS, only CDS, XDS, and XOM access to CDS are supported. GDS, XDS, and XOM access to GDS
are not supported.

The following DCE daemon is not supported on z/OS DCE:
¢ DCE Security daemon

Note: Although the DCE Security daemon is not included in z/OS DCE, a security server is available
from IBM as a separately licensed program.

OSF DCE Programming Interfaces
¢ pthread interfaces
— The following interfaces are not supported by z/OS DCE and return -1, errno ENOSYS:

- pthread_attr_getinheritsched()
- pthread_attr_getprio()

- pthread_attr_getsched()

- pthread_attr_setinheritsched()
- pthread_attr_setprio()

- pthread_attr_setsched()

- pthread_getprio()

- pthread_getscheduler()

- pthread_setprio()

- pthread_setscheduler()

For all pthread interfaces (including mutexes, threads, condition variables and so on), the
interfaces do not accept copies of the objects as a parameter. The object returned from the
pthread interface to create the object must be used at all times.

— Unlike the OSF DCE implementation, the z/OS DCE implementation of the following functions can
raise an exception (exc_e_cpa_error) in error situations:

- pthread_lock_global_np()
- pthread_unlock_global_np()

— pthread_cond_timedwait() expects an absolute hardware time (that is, time-of-day clock value) for
the wait time instead of the DCE software clock time, which is what OSF/DCE expects.
pthread_get_expiration_np() returns a software adjusted time as in the OSF/DCE model, and is
used as input to pthread_cond_timedwait().

— exc_report() does not print out a message to stderr as expected. z/OS DCE uses Reliability,
Availability and Serviceability (RAS) services to log messages instead of this function.

— pthread_cond_init cannot initialize a condition variable more than once.
— pthread_mutex_init cannot initialize a mutex more than once.

¢ Exceptions

XXiV Application Development Guide: Core Components

— z/OS DCE catches z/OS ABENDs in addition to the set of predefined exceptions and user defined
exceptions.

— TRY/CATCH/ENDTRY macros can raise an exc_e_insfmem exception if they cannot get enough
heap storage.

— TRY/CATCH/ENDTRY macros can raise an exc_e_uninitexc exception if they detect that the
CATCH does not specify a valid exception.

¢ Remote Procedure Call
The following interfaces are not supported:
— rpc_mgmt_set_server_stack_size()
e Security Services
The following interfaces are not supported:

— sec_login_get_pwent()
— sec_login_init_first()

How This Book Is Organized

This guide is divided into five major parts. The first part introduces some DCE facilities and the following
parts contain detailed information on using the various DCE components and their respective APIs that are
supported by z/OS DCE.

« |Part_1, “DCE Facilities” on page 1|introduces two DCE facilities, DCE Host Services and the DCE
Backing Store. Descriptions of these facilities and how you might put these useful facilities to work in
your applications is detailed in this part.

e [Part 2, “Using the DCE Remote Procedure Call APIs” on page 35|shows you how to use the Remote
Procedure Call (RPC) APIs to create DCE RPC applications. You are introduced to the RPC model
and RPC components, and shown the steps in developing an RPC application. Advanced RPC
issues, such as using the Name Service Interface and handling remote errors, are discussed. In
addition, the syntax notation conventions and language elements of the Interface Definition Language
(IDL) and Attribute Configuration Language (ACF) are described in detail.

e [Part_3, “Using the DCE Threads APIs” on page 313|shows you how to increase the performance of
your distributed applications using the DCE Threads APIs. You are introduced to Threads concepts
and shown several models for multithreaded programming. In addition, you are shown how to use the
DCE Threads exception handling interface to handle abnormal conditions in your applications. A
comparison between DCE Threads concepts and z/OS multitasking is provided to help you avoid
pitfalls caused by semantic differences.

* |Part 4, “Using the DCE Distributed Time Service APIs” on page 367 shows you how to use the DTS
APIs in DCE applications to convert between different time formats and representations to determine
event sequencing, duration, and scheduling. In addition, you are shown how to use external
time-provider services with the DCE Time-Provider Interface. A programming example shows you how
to use the DTS APIs.

e [Part 5, “Using the DCE Security APIs” on page 395 provides details on the DCE Security services
and facilities, and describes the main Security interfaces. Walkthroughs of Authentication and
Authorization are presented to enhance your understanding of the DCE security concepts. You are
shown how to use the DCE Security APIs to enable your client applications to communicate with the
Registry server, establish a login context, manage secret keys, and communicate with the Access
Control List facility.

To find more information on topics related to application development not addressed in this book, consult
the following:

About This Book XXV

* |z/0S DCE Application Development Referencel SC24-5908

» (208 DCE Administration Guidd, SC24-5904

* |z/0S DCE Application Support Programming Guide} SC24-5902 (CICS and IMS)
* |z/0S DCE Messages and Codes, SC24-5912

For example, the DCE CDS is discussed in detail as a separate component in the administration
documentation. Similarly, certain aspects of the DCE Security Service important to application developers
(such as adding new principals to the registry database) are found only in the administration books.

Terminology Used in This Book
Because DCE technology has been developed from the UNIX environment, many DCE concepts and
terms contained herein relate to that environment. z/OS terms and concepts are used throughout this

book wherever possible.

The following table explains how certain terms are used in this book and how they are related.

Related Terms Relationship

file Throughout this book, the term file can refer to a sequential data
set, a member of a partitioned data set, or a hierarchical file
system (HFS) file (UNIX System Services file system). For more
sequential data set information on hierarchical file systems in z/OS, see [0S UNIX|
|System Services User's Guidd, SA22-7801.

data set

partitioned data set member

hierarchical file system (HFS) file

user prefix The term user prefix is used throughout this book when referring
to the names of data sets in a TSO/E environment. In that
environment, the user prefix is usually a user’s logon
identification. If desired, you can set the user prefix to a value
other than the your logon identification by using the TSO/E
PROFILE command. In z/OS batch mode, your user prefix
depends on whether Resource Access Control Facility (RACF®),
a component of the SecureWay® Security Server for z/OS, or
another security product is installed on your system. If RACF is
installed, and you are processing in batch mode, your user prefix
can be the same as your logon user identification. If RACF is
not installed and you are processing in batch mode under z/OS,
you may not have to use a prefix. See your systems
programmer to determine the RACF settings for your site.

data set names

Unless otherwise specified, when the full name of a data set is
referred to, the high-level qualifier for that data set will be
represented by USERPRFX. The USERPRFX is determined by
the application developer, and depends on the library where the
application is installed. For example,
USERPRFX.EXAMPLE.C(MEMBER) represents a partitioned data
set whose first-level qualifier is represented by USERPRFX,
whose second-level qualifier is EXAMPLE, and whose third-level
qualifier is C. lts member is MEMBER.

application programming interface (API) Throughout this book, the terms API, call, function, and routine
all refer to the same z/OS DCE application programming
interface. For example, rpc_binding_free() API,

function rpc_binding_free() call, and rpc_binding_free() routine, all
refer to the same rpc_binding_free() function.

call

routine

XXVi Application Development Guide: Core Components

Related Terms

Relationship

DCE components

Throughout this book, all references to individual DCE
components (such as RPC) refer to that component within z/OS
DCE. For example, references to RPC, DCE RPC, and z/OS
DCE RPC all refer to the same z/OS DCE component.

z/OS SecureWay Security Server DCE In this book the term “DCE Security Server” (or simply “Security

Server”) refers to the z/OS SecureWay Security Server DCE or
to a DCE Security Server provided on another host in the DCE
cell. The z/OS SecureWay Security Server DCE is a component
of the SecureWay Security Server for z/OS.

daemon
process

started task

address space

The term daemon (originating from the UNIX operating system)
is used throughout this book. It is synonymous with a process.
Usually there is one process per address space; however, the
DCEKERN started task is an exception in that its address space
contains several processes (or daemons).

Conventions Used in This Book

This book uses the following typographic conventions:

Bold

Iltalic

Example font

[]
{}

Bold words or characters represent system elements that you must enter into
the system literally, such as commands, options, or path names.

Italic words or characters represent values for variables.

Examples and information displayed by the system appear in constant width
type style.

Brackets enclose optional items in format and syntax descriptions.

Braces enclose a list from which you must choose an item in format and
syntax descriptions.

A vertical bar separates items in a list of choices.
Angle brackets enclose the name of a key on the keyboard.

Horizontal ellipsis points indicate that you can repeat the preceding item one
or more times.

A backslash is used as a continuation character when entering commands
from the shell that exceed one line (255 characters). If the command
exceeds one line, use the backslash character \ as the last non-blank
character on the line to be continued, and continue the command on the next
line.

This book uses the following keying conventions:

<Alt-c> The notation <Alt-c> followed by the name of a key indicates a control character
sequence.
<Return> The notation <Return> refers to the key on your keyboard that is labeled with the

word Return or Enter, or with a left arrow.

Entering commands When instructed to enter a command, type the command name and then press

<Return>.

About This Book XXVil

Where to Find More Information

Where necessary, this book references information in other books using shortened versions of the book
title. For complete titles and order numbers of the books for all products that are part of z/OS, see the
[z/OS Information Roadmap, SA22-7500. For complete titles and order numbers of the books for z/0OS
DCE, refer to the publications listed in the [‘Bibliography” on page 577

For information about installing zZOS DCE components, see the [zZ70S Program Directory,

Softcopy Publications

The z/OS DCE library is available on a CD-ROM, z/OS Collection, SK3T-4269. The CD-ROM online
library collection is a set of unlicensed books for z/OS and related products that includes the IBM Library
Reader.™ This is a program that enables you to view the BookManager® files. This CD-ROM also
contains the Portable Document Format (PDF) files. You can view or print these files with the Adobe
Acrobat reader.

Internet Sources

The Softcopy z/OS publications are also available for web-browsing and for viewing or printing PDFs using
the following URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

You can also provide comments about this book and any other z/OS documentation by visiting that URL.
Your feedback is important in helping to provide the most accurate and high-quality information.

Using LookAt to Look up Message Explanations

LookAt is an online facility that allows you to look up explanations for zZOS messages. You can also use
LookAt to look up explanations of system abends.

Using LookAt to find information is faster than a conventional search because LookAt goes directly to the
explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lTookat/Tookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system. You can obtain the
LookAt code for TSO from the LookAt Web site by clicking on the News and Help link or from the z/OS
Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat message-id as in the
following:

Tookat iecl92i
This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message ID and select the
release with which you are working.

XXViii Application Development Guide: Core Components

Note: Some messages have information in more than one book. For example, IEC192I has routing and
descriptor codes listed in [zZ0S MVS Routing and Descriptor Codes, SA22-7624. For such
messages, LookAt prompts you to choose which book to open.

Accessing Licensed Books on the Web

z/OS licensed documentation in PDF format is available on the Internet at the IBM Resource Link site:

http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to these books requires an
IBM Resource Link user ID, password, and z/OS licensed book key code. The z/OS order that you
received provides a memo that includes your key code.

To obtain your IBM Resource Link user ID and password, logon to:

http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

. Logon to Resource Link using your Resource Link user ID and password.
. Select User Profiles located on the left-hand navigation bar.

. Select Access Profile.

. Select Request Access to Licensed books.

. Supply your key code where requested and select the Submit button.

gk~ o=

If you supplied the correct key code you will receive confirmation that your request is being processed.

After your request is processed you will receive an e-mail confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for access to them and
received an e-mail confirmation informing you that your request has been processed.

To access the licensed books:

1. Logon to Resource Link using your Resource Link user ID and password.
. Select Library.

. Select zSeries.

. Select Software.

. Select 2/0S.

. Access the licensed book by selecting the appropriate element.

OOk~ WN

About This Book XXiX

XXX Application Development Guide: Core Components

This part describes two DCE facilities:
¢ DCE Host Services
¢ DCE Backing Store

Chapter 1. Introduction to DCE Facilities

Chapter 2. DCE Host Services
Types of Applications
Issues of Distributed Applications
Managing a Host's Endpoint Map
Binding to the dced Services
Host Service Naming in Applications C
The dced Maintains Entry Lists
Reading All of a Host Service's Data
Managing Individual dced Entries
Managing Host Data on a Remote Host
Kinds of Host Data Stored
Adding New Host Data
Modifying Host Data
Running Programs Automatically When
Host Data Changes
Controlling Servers Remotely
Two States of Server Management:
Configuration and Execution
Configuring Servers
Starting and Stopping Servers
Enabling and Disabling Services of a
Server

© Copyright IBM Corp. 1994, 2001

Part 1. DCE Facilities

Validating the Security Server 23
Managing Server Key Tables 23
Chapter 3. The DCE Backing Store 27
Data in a Backing Store 27
Using A Backing Store 27
HeaderforData 27
The User Interface 28
The IDL Encoding Services 29
Encoding and Decoding in the Backing
Store 29
Conformant Arrays Not Allowed 29
The Backing Store Routines 30
Opening a Backing Store 30

Closing a Backing Store 30

Storing or Retrieving Data 31
FreeingData 31
Making or Retrieving Headers 31
Performing lteration 31

Deleting Items from a Backing Store 32
Locking and Unlocking a Backing Store . . . 32
Example of Backing Store Use

2 Application Development Guide: Core Components

Chapter 1. Introduction to DCE Facilities

By now you are aware that DCE consists of a number of major components, each of which addresses
some necessary aspect of distributed computing:

¢ Threads make programs more efficient by allowing parallel execution of portions of code
¢ Remote Procedure Calls (RPCs) hide network details from applications
¢ Time Service gives consistent time to widely scattered cells and hosts

e Security gives programs assurances that users and other programs are who they say they are and
that they are authorized to do what they are supposed to do

¢ Directory Service helps clients find servers and other resources

For most applications, a DCE component is not used by itself but the components all work together to
create a very useful and powerful environment.

The more you understand DCE and its components, the more you will realize that a strict division by
component is not always clear. The document set for DCE is organized by component mostly for the
convenience of people trying to explain and understand DCE, but applications often contain a blend of
aspects of all the components. This is why it often seems like the information you need to do your work is
scattered across many chapters or volumes, and why advanced or unusual features seem to be described
along side basic or typical tasks. DCE also has some special facilities that just do not fit neatly into any
one discussion of a DCE component, and these are the facilities we describe in this first part of this book.

You should read the [z/0S DCE Application Development Guide: Introduction and Style|prior to using the
DCE facilities described here, and you may want to skip to other parts of this book before learning details
about the DCE facilities.

For the most part, the DCE facilities are already used by one or more major components of DCE to
accomplish some feature they require, while others are stand-alone facilities intended to make developing
distributed applications easier. These facilities are described separately here so that you can use them for
your own applications too. The DCE facilities include the following:

Host Services Host Services give remote access to several kinds of data and
functionality with respect to each DCE host and its servers. Each
host runs a DCE Host daemon (dced) as the interface to the Host
Services. In many cases dced automatically maintains the data and
performs the functions. Some of the data that you can access (and
maintain) remotely includes the host name, the host's cell name,
configuration and execution data for all servers on the host, and a
database of endpoints (server addresses) through which running
servers can be contacted. Some of the functions that you can
perform remotely include starting and stopping servers.

Backing Store Database Service You use a backing store to maintain typed data between invocations
of applications. For example, you could store application-specific
configuration data in a backing store, and then when the application
restarts, it could read the previous configuration from the backing
store. Data is stored and retrieved by a UUID or character string
key, and each record (or data item) may have a standard header if
you wish.

As DCE has developed and improved, useful facilities have been added to make DCE easier and more
useful. Some solutions developed to implement a major component's feature can also prove useful to

© Copyright IBM Corp. 1994, 2001 3

your applications. For example, the Security component must have a way to maintain Access Control
Lists (ACLs). While the backing store was developed to handle this kind of task, you can use this facility
to store your own application-specific data across invocations.

This first part of this book describes how you might put these useful facilities to work in your applications.

4 Application Development Guide: Core Components

Chapter 2. DCE Host Services

Every DCE host must maintain certain kinds of data about itself and the servers it provides. For example,
each host stores configuration data about its DCE environment, and it also stores data about servers
registered and running on the host. In addition, each host needs some services to not only manage this
data, but also to administer the host and DCE servers. For example, a service that can start and stop
specific servers has obvious value. The DCE host services consist of the following:

Endpoint Mapper The endpoint mapper service enables a client to find servers on a particular
host and the services and objects provided by those services. This service
maintains on each host an endpoint map that contains a mapping of port
addresses (endpoints) to servers, the services servers provide, and the
objects servers manage.

Host Data Management The host data management service stores and controls access to such data
as the host's cell name, the host name, and the cell alias names, among
other things.

Server Management The server management service can start and stop specified servers on a
host, enable or disable specific services provided by a server, and manage
configuration and execution data about these servers.

Security Validation The security validation service maintains a login context for the host's identity
of itself, maintains the host principal's keys, and assures applications
(especially login programs) that the DCE Security Daemon (secd) is genuine.

Key Table Management A server uses private keys for its security instead of human-entered
passwords. The key table management service can be used to manage the
keys stored in key tables on a server's host.

Of course in a distributed environment, these data and services must be easily yet securely accessible
from other hosts. The DCE Host Daemon (dced) is a continuously running program on each host that
provides access to the host services either locally on that host, or remotely from another host.

Types of Applications

Although your applications may need some aspect of these host services (control over which services are
enabled for a particular server, for example), typical servers do not have to do any special coding for
them. This reduces the size and complexity of server code, and it keeps the details of administration out
of applications. This also takes the burden of server administration off of you so you can concentrate on
the application's business functionality.

System administrators will appreciate this development model too because it is unlikely that many servers
implementing their own administrative mechanisms will all behave in the same manner. Administrators
commonly use the DCE control program, dcecp, to access the host services (via deed) of any host in
their distributed environment (provided the user has the appropriate permissions). The dcecp also uses
a script language for more sophisticated administration. See the [z20S DCE Administration Guide|for more
on using dcecp to access the host services.

Although the dcecp commands offer an administrator a great deal of control over DCE hosts and servers,
a set of APIs are also supplied for application developers who need to access the DCE host services from
an application rather than from scripts or the operating system's command line.

© Copyright IBM Corp. 1994, 2001 5

Typical business applications do not use the APIs of these services, but a management application might.
A management application is a client or server that manages other servers or some aspect of the
distributed environment. (The dced is itself a management application that is built into DCE.) Some other
types of applications that might use these APlIs include:

¢ Applications that control other servers for load balancing or server redundancy.

¢ Applications that use a graphical user interface (GUI) instead of the command line interface provided
by the dcecp program.

¢ Applications that need to monitor a server's current state. For example, an application may need to
make sure a particular server or one of its services is available.

Issues of Distributed Applications

The most important aspect of dced is that it gives system administrators the ability to remotely manage
services, servers, endpoints, and even objects on any host in DCE. This eliminates the frustrating and
tedious task of logging in to many different hosts to manage them. This also allows for scalability because
it is impractical to manage a large system by logging in to all its hosts.

The features of dced are greatly enhanced when used remotely. Of course an administrator can use
dced to locally manage a host's services, but dced's real power is in remotely managing system and
application server configurations, key tables, server startup, login configurations, and cell information.

Security becomes a major issue when it comes to remote services. With the power of dced's services
and the dcecp tool, it is important that only authorized principals can use them. The dced controls
access to its various objects using ACLs. Server keys are security-sensitive data that must be seldom
transmitted over the network. All key table data are encrypted when they are transmitted for secure
remote key table management.

Finally, the remote capabilities of the dced give you real-time status of processes and services in DCE.

Managing a Host's Endpoint Map

Each DCE host has an endpoint map that contains a mapping of servers to endpoints. Each endpoint
map server entry is associated with an array of services (interfaces) provided by the server, and each
service is associated with an array of objects supported by the service.

When a typical server calls the dce_server_register() routine, the RPC runtime generates the endpoints

on which the server will listen for calls and then uses dced's endpoint mapper service of the local host to
register the endpoints. Later, when a typical client makes a remote procedure call, its RPC runtime uses

the server host's endpoint mapper service to find the server. When the typical server shuts down, it calls
the dce_server_unregister() routine to remove its endpoints from the endpoint map so that clients do not
later try to bind to it.

Applications can also use the lower level rpc_ep_register() and associated RPC routines. Because the
endpoint map is essential for RPCs to work, endpoints are fully described in|[Chapter 5, “RPC]|
[Fundamentals” on page 59| and the endpoint map structure is described with respect to routing of RPCs
in|Chapter 10, “Topics in RPC Application Development” on page 173

The endpoint map is for the most part maintained automatically by dced. For example, it periodically
removes stale endpoints so that the RPC runtime will not try to complete a binding for a client to a server
that is no longer running. However, administrative applications may find it necessary to peruse a remote
endpoint map and even remove specific endpoints from a local host's endpoint map.

6 Application Development Guide: Core Components

To read the elements of a remote endpoint map, applications use a loop with the set of routines
rpc_mgmt_ep_elt_ing_begin(), rpc_mgmt_ep_elt_inq_next(), and rpc_mgmt_ep_elt_inq_done(). The
inquiry can return all elements until the list is exhausted, or the inquiry can be restricted to return elements
for the following:

¢ Elements matching an interface identifier (UUID and version number)
¢ Elements matching an object UUID
¢ Elements matching both an interface identifier and object UUID
Administrators can manage the endpoint map by using dcecp with the endpoint object. In an extreme

situation, you could permanently remove endpoints directly from the local endpoint map by calling the
rpc_mgmt_ep_unregister() routine. This function cannot be done remotely for security reasons.

Binding to the dced Services

When you write a program that uses a host service, you begin by creating a dced binding to the service
on a particular host. Bindings are relationships between clients and servers that allow them to
communicate. A dced binding is a specific kind of binding that not only gives your application a binding to
the dced server, but it also associates the binding with a specific host service on that server.!

In general, an application follows these basic steps to use a host service:

1. Establish a binding to the service on the desired host. For example, your application can establish a
binding to the host data management service on another host.

2. Obtain one or more dced entries for that service. For example, your application can obtain the host
data entry that identifies the host's cell name, among other things. This step is valid for the following
services:

¢ Host data management
e Server management
¢ Key table management

Depending on the service and function desired, this step may or may not be necessary. For example,
the security validation service does not store data, so dced maintains no entries for this service.

3. Access (read or write) the actual data for the entries obtained or perform other functions appropriate
for the service. For example, if your application reads the host data management service's cell name
entry, the API accesses dced which may actually read the data from a file. For another example, if
your application established a binding to the security validation service, it could validate the Security
daemon.

4. Release the resources obtained in step 2.

5. Free the binding established in step 1.

Applications bind to a host service using the dced_binding_create() or
dced_binding_from_rpc_binding() routine. The first routine establishes a dced binding to a service on a
host specified in a service name, and the second routine establishes a dced binding to a service on a host
for which the application already has a binding. Both of the routines return a dced binding handle of type
dced_binding_handle_t, which is used as an input parameter to all other dced API routines.

1 Applications must establish a binding to each host service used. However, the endpoint mapper service uses a different binding
mechanism and API from the other host services. This is due to the fact that the endpoint mapper service already existed within
the very large RPC API in earlier versions of DCE, prior to the development of dced.

Chapter 2. DCE Host Services 7

Host Service Naming in Applications

Applications include a host service name as input to the dced binding routine dced_binding_create(). A
host service name is a string that may include a host name, or a cell and host name. The following key
words in the host service name refer to a specific DCE host service:

hostdata The hostdata name refers to configuration data of the host data management service.

srvrconf The srvrconf name refers to the static server configuration portion of the server management
service. This refers to the management of a DCE-installed server.

srvrexec The srvrexec name refers to the dynamic server execution portion of the server management
service. This refers to the management of a running DCE-installed server.

secval The secval name refers to the security validation service.

keytab The keytab name refers to the private key data of the key table management service.

The following examples show service names and the locations of the hosts in the namespace:

service The host is local, the same as the application's.
service@hosts/host The host is in the local namespace.
I.:/hosts/host/config/service The complete specification for the previous example where the host

is in the local namespace.

I...Icelllhosts/hostlconfig/service The host is in the global namespace.

Since the dced_binding_from_rpc_binding() routine already knows which host to bind to from an RPC
binding input parameter, it uses one of the global variables defined for each service (instead of a string) to
specify which dced service to use.

The dced Maintains Entry Lists

One dced service's data is very different from another's (for example, server configuration data versus key
table data), but you manipulate the data in a similar way. This is because it is a simpler and more
efficient design to implement a few API routines that can handle more than one kind of data rather than
many routines that do essentially the same thing but on a different service's data. An added benefit is a
flexible API that can handle your own application's data and new kinds of DCE data in the future.

To separate the actual data from the APl implementation, a dced service maintains a list of all data items
in an entry list. Entry lists contain entries that describe the name and location of each item of data, but do
not contain the actual data. With this mechanism, dced can obtain and manipulate data very efficiently,
without concern for the implementation and location of the actual data. It also supports well the model
administrators commonly need when accessing data: scan a list, select an item, and use the data.

[Figure 1 on page 9 shows the entry lists maintained by dced.

8 Application Development Guide: Core Components

dced hostdata entry list

Host Data Entry

Server Management Entry Lists

srvrconf entry list srvrexec entry list
L] L]

Server Configuration Entry ‘ ‘ Server Execution Entry

keytab entry list

Key Table Entry

Figure 1. The dced Entry Lists

The dced maintains entry lists for the hostdata, srvrconf, srvrexec, and keytab services. The secval
service does not need an entry list because it does not maintain any data, but functions are performed to
set its state.

There is a special relationship between srvrconf and srvrexec entries. In order for dced to control the
start of a server, the server must have a srvrconf entry associated with server configuration data. When
dced starts a server, it generates from the srvrconf entry and data a srvrexec entry and associates the
new entry with the running server's state.

Although an entry can be associated with many different kinds of data items, all entries have the same
structure as shown in Figure 2.

Entry UUID, Name, Description, Storage Tag

Figure 2. Structure of an Entry

Each entry is a dced_entry_t data structure. Each member of this data structure is described as follows:

Chapter 2. DCE Host Services

9

id An entry UUID is necessary to uniquely identify the data item. Some data items have
well-known UUIDs (the same UUID for the particular item on all hosts). The data type is
uuid_t.

name Each data item is identified with a name, to which applications refer. The name need only
be unique within an entry list, because the entry UUID guarantees the entry's uniqueness.
Some item names are well-known and defined in header files. The data type is
dced_string_t.

description This is a human-readable description of the data item. Its data type is dced_string_t.

storage_tag The storage tag locates the actual data. Each service knows how to interpret this tag to
find the data. For example, some data is stored in a file, the name of which is contained
in the storage tag. Other data is stored in memory and the storage tag contains a pointer
to the memory location. The data type is dced_string_t.

Reading All of a Host Service's Data

Suppose you want to display host service data in an application that has a graphical user interface. The
dcecp commands may not be adequate to display data for this application. The following example shows
how to obtain the entire set of data for each host service:

dced_binding_handle_t dced_bh;

dced_string_t host_service;
void *xdata_Tist;
unsigned32 count;
dced_service_type t service_type;
error_status_t status;

while(user_selects(&host_service, &service type)){ /+application specific*/
dced_binding_create(host_service,
dced_c_binding_syntax_default,
&dced_bh,
&status);
if(status == error_status_ok) {
dced_object_read_all(dced_bh, &count, &data list, &status);
if(status == error_status_ok) {
display(service_type, count, data Tlist); /+application specific*/
dced_objects_release(dced_bh, count, data_list, &status);

}
dced_binding free(dced bh, &status);

}
Following is a description of the example:

user_selects() This is an example of an application-specific routine that constructs the
complete service name from host and service name information. Data is
stored and retrievable for the hostdata, srvrconf, srvrexec, and keytab
services. No data is stored for the secval service.

dced_binding_create() = Output from the dced_binding_create routine includes a dced binding handle
whose data type is dced_binding_handle_t. If an application already has an
RPC binding handle to a server on the host desired, it can use the
dced_binding_from_rpc_binding() routine to bind to dced and one of its host
services on that host. (Applications also use these routines to bind to the
secval service to perform other functions.)

10 Application Development Guide: Core Components

dced_object_read_all()

display()

dced_objects_release()

dced_binding_free()

Applications use the dced_object_read_all() routine to read data for all the
objects in an entry list. The output includes the address of an allocated buffer
of data and a count of the number of objects the buffer contains. The data
type in the buffer depends on the service used.

This is an application specific routine that displays the data. Before the data is
displayed, it must be interpreted depending on the service. The hostdata data
is an array of sec_attr_t data structures, the srvrconf and srvrexec data are
arrays of server_t structures, and the keytab data is an array of
dced_key_list_t structures. The following code fragments show the data type
for each service:

void display(
dced_service_type_t service_type, /* dced service type */

int count, /* count of the number of data items */
void xdata) /* obtained from dced object read{ all}() */
{

sec_attr_t *host_data;

server_t *Servers;

dced_key_list_t ~keytab_data;

switch(service_type) {
case dced_e_service_type_hostdata:
host_data = (sec_attr_t =*)data;

case dced_e_service_type_srvrconf:
servers = (server_t *)data;

case dced_e_service_type_srvrexec:
servers = (server_t *)data;

case dced_e_service_type_keytab:
keytab_data = (dced_key 1ist_t =*)data;

default:
/* No other dced service types have data to read. */
break;

}

return;

}

Each call to the dced_object_read_all() routine requires a corresponding call
to dced_objects_release() to release the resources allocated.

Each call to the dced_binding_create() routine requires a corresponding call
to dced_binding_free() to release the resources for the binding allocated.

Managing Individual dced Entries

[Figure 3 on page 12 shows examples of individual dced entries and the locations of associated data.
The data item name or its UUID is used to find an entry, and then the storage tag is used to find the data.

Chapter 2. DCE Host Services 11

DCE Host

dced

hostdata entry

UUID ... file location

srvrconf entry
UUID . . . object location

data

srvrexec entry

UUID . . . object location

keytab entry

data

UUID . . . file location

—

I
~ Local Host's Disk
\

Figure 3. Accessing Host Data

The data for each hostdata item is stored in a file on disk. The dced uses the UUID to find the entry in
the hostdata entry list. The entry's storage tag is then used to find the data. For hostdata, the tag
contains a file name. The data returned for one entry is an array of strings in a sec_attr_t structure.

The server management data is stored in memory. The dced uses UUIDs (maintained in the entry lists by
dced) to find an entry. The location of the data in memory is indicated by the storage tag. The data
returned for one entry is a structure of server data (server_t). All data for the srvrconf and srvrexec
entries are accessed from memory for fast retrieval, but the srvrconf data is also stored on disk for use
when a host needs to restart DCE.

Each keytab entry stores its data in a file on disk. However, like the server management entries, the
keytab entries use server names and corresponding UUIDs (maintained by dced) to identify each entry.

12 Application Development Guide: Core Components

The storage tag contains the name of the key table file. The data returned for one entry is a list of keys of

type dced_key_list_t.

The following example shows how to obtain and manage individual entries for the hostdata, srvrconf,

srvrexec, or keytab services.

handle_t rpc_bh;
dced_binding_handle_t dced_bh;
dced_entry list_t entries;
unsigned32 i
dced_service_type_t service_type;
void *data;
error_status_t status;

dced_binding_from rpc_binding(service type, rpc_bh, &dced bh, &status);

if(status != error_status_ok)
return;

dced_Tist_get(dced_bh, &entries, &status);

if(status == error_status_ok) {

for(i=0; i<entries.count; i++) {
if(select_entry(entries.list[i].name)) {/* application specific */
dced_object read(dced bh, &(entries.list[i].id), &data, &status);
if(status == error_status_ok) {
display(service_type, 1, &data); /+ application specific */
dced_objects_release(dced_bh, 1, data, &status);

}
}

dced_Tist_release(dced_bh, &entries, &status);

}

dced_binding_free(dced_bh, &status);

Each routine is described as follows:

dced_binding_from_rpc_binding()

dced_list_get()

select_entry()

The dced_binding_from_rpc_binding routine returns a dced
binding handle whose data type is dced_binding_handle_t. This
binding handle is used in all subsequent dced API routines to
access the service. The host is determined from the RPC binding
handle, rpc_bh, and the service_type is selected from the following
list:

e dced_e_service_type_hostdata
e dced_e_service_type_srvrconf
e dced_e_service_type_srvrexec
e dced_e_service_type_keytab

Applications use the dced_list_get() routine to get a service's
entire list of names. Using the dced_list_get() routine gives your
application great flexibility when manipulating entries in an entry
list. If you prefer, your application can use the
dced_entry_cursor_initialize(), dced_entry_get_next(), and
dced_entry_cursor_release() set of routines to obtain individual
entries, one at a time.

This is an application specific routine that selects which entry to
use based on the entry name.

Chapter 2. DCE Host Services 13

dced_object_read() The default attribute for dced_object_read() is to return an array of
strings. The hostdata and keytab services have other read
routines that allow you to specify binary data.

display() This is an example of an application-specific routine that simply
displays the server configuration data read. Depending on the
service, a different data structure is used. For the hostdata
service a sec_attr_t is used. For the srvrconf and srvrexec
services server_t structures are used. For the keytab service a
dced_key_list_t structure is used.

dced_objects_release() After your application is finished with the data read with the
dced_object_read() routine, free the buffer of data allocated using
the dced_objects_release() routine.

dced_list_release() Each call to the dced_list_get() routine requires a corresponding
call to dced_list_release() to release the resources allocated for
the entry list.

dced_binding_free() Each call to the dced_binding_from_rpc_binding() routine
requires a corresponding call to dced_binding_free() to release
the resources of the allocated binding.

Managing Host Data on a Remote Host

Administrators typically use the dcecp hostdata object to remotely manage the data of the hostdata
service. However, application developers can use the dced API for their own management applications or
if dcecp does not handle a task in the desired way, such as for a browser of host data that uses a
graphical user interface.

Kinds of Host Data Stored

Each hostdata item is stored in a file and dced has a UUID associated with each. On z/OS DCE, the
standard data items include the following well-known names:

cell_name The name of the cell to which your host belongs is stored.

cell_aliases When the cell name changes, the old names are designated as cell aliases.
dce_cf.db The DCE configuration data file is stored.

host_name The host name is stored.

pe_site The location of the Security server is stored.

post_processors The post_processors file contains UUID-program pairs for which the UUIDs
represent other hostdata items. If changes occur to an associated hostdata item, the
system runs the program.

In addition to the well-known hostdata items, applications can also add their own. (DCE implementations
other than z/OS DCE may also define additional items.) The well-known hostdata items have well-known
UUIDs defined in the file /usr/include/dce/dced_data.h, but you can use the dced_inq_uuid() routine to
obtain any UUID associated with any hame known to dced.

See the |zZ0S DCE Administration Guide|for additional information on managing host data.

14 Application Development Guide: Core Components

Adding New Host Data

In addition to modifying existing host data, you can add your own data by using the host data API. For
example, suppose you want to add a printer to a host, and make the configuration file part of that host's
dced data. The following example shows how to do this:

dced_binding handle_t dced_bh;

error_status_t status;
dced_entry_t entry;
dced_attr_Tlist_t data;

int num_attr, str_size;

sec_attr_enc_str_array_t *xattr_array;

dced_binding_create(dced_c_service_hostdata,
dced_c_binding_syntax_default,
&dced_bh,
&status);
/*Create Entry Data */
uuid_create(&(entry.id), &status);
entry.name = (dced string_t) ("NEWERprinter");
entry.description = (dced_string_t)("Configuration for a new printer.");
entry.storage_tag = (dced_string_t)("/etc/NEWprinter");

/* Create the Attributes, one for this example */
data.count = 1;
num_attr = 1;
data.list = (sec_attr_ t *)malloc(data.count * sizeof(sec_attr t));
(data.list)->attr_id = dced_g uuid_fileattr;
(data.list)->attr_value.attr_encoding = sec_attr_enc_printstring_array;
str_size = sizeof(sec_attr_enc_str_array_t) +

num_attr * sizeof(sec_attr _enc_printstring p t);
attr_array = (sec_attr_enc_str_array t *)malloc(str_size);
(data.list)->attr_value.tagged union.string_array = attr_array;
attr_array->num_strings = num_attr;
attr_array->strings[0] = (dced _string_t)("New printer configuration data");

dced_hostdata_create(dced_bh, &entry, &data, &status);
dced_binding free(dced bh, &status);

Following is a description of the example:

dced_binding_create() This routine creates a dced binding to a dced service. The binding handle
created is used in all subsequent calls to appropriate dced API routines. By
using the dced_c_server_hostdata value for the first parameter, we are using
the hostdata service on the local host.

Create Entry Data Prior to creating a hostdata entry, we have to set its values. These include
the name and UUID that dced will use to identify the new data, a description
of the entry, and a file name with the full path where the actual data will
reside.

Create the Attributes The data stored is of type sec_attr_t. This data type is a very flexible one
which can store many different kinds of data. In this example we set the file
to have one attribute, printable string information. This example has only one
string of data. You can also establish binary data for the file.

dced_hostdata_create() This routine takes the binding handle, entry, and new data as input, creates
the file with the new data, and returns a status code.

If the printer configuration file already exists on the host, but you want to make

Chapter 2. DCE Host Services 15

it accessible to dced, use the dce_entry_add() routine instead of
dced_hostdata_create().

dced_binding_free() Each call to the dced_binding_create() routine requires a corresponding call
to dced_binding_free() to release the binding resources allocated.

Use the dced_hostdata_delete() routine to delete application-specific hostdata items and their entries.
For example, the printer installed in the above example is easily removed with this routine. If you are only
taking the printer out of service for a short time, use the dced_entry_remove() routine to remove the
dced entry but not the data file itself. When the printer is later ready again, use the dced_entry_add()
routine to re-install it.

Do not delete the well-known hostdata items or remove their entries.

Modifying Host Data

Changing host data can not only change the way the host works but it affects other files and processes on
the host. Therefore, care should be taken when changing host data. Deleting the well-known hostdata
entries can cause even more serious operational problems for the host.

The current as well as earlier versions of DCE provide configuration routines that use a dce_cf.db file for
data. When host data changes, dced also makes the appropriate changes to this file so that the dce_cf*
routines continue to work correctly. This is one reason the hostdata items are established as well-known
names with well-known UUIDs so that dced knows which values to monitor.

Management applications use the dced_hostdata_read() routine to obtain the data for an entry referred to
by an entry UUID. To modify an entry's actual data, applications use the dced_hostdata_write() routine.
This routine replaces the old data with the new data for the host data entry represented by the entry
UUID. The host data entry must already exist because this routine will not create it. Use the
dced_hostdata_create() routine to create new host data entries.

Running Programs Automatically When Host Data Changes

The following example shows how to use the post_processors feature of the well-known hostdata to
cause dced to automatically run a program if another hostdata entry changes. In this example, the
post_processors file is read, and data is added for the NEWERprinter hostdata entry created in an earlier
example. The data is placed in a dced_attr_list_t structure and written back to the post_processors
hostdata entry.

dced_binding_handle_t dced_bh;

uuid_t entry uuid;

sec_attr_t xdata_ptr;

error_status_t status;

int i, num_strings, str_size;
sec_attr_enc_str_array_t xattr_array;

unsigned_char_t *string_uuid, temp_string[200];
dced_attr_list_t attr_list;

dced_binding_create(dced _c_service_hostdata,
dced_c_binding_syntax_default,
&dced_bh,
&status);
dced_hostdata_read(dced_bh,
&dced_g_uuid_hostdata_post_proc,
&dced_g_uuid_fileattr,
&data_ptr,
&status);

16 Application Development Guide: Core Components

/* Create New Array and Copy 01d Data into it =/
num_strings = data_ptr->attr_value.tagged_union.string_array->num_strings + 1;
str_size = sizeof(sec_attr_enc_str_array_t) +
num_strings * sizeof(sec_attr_enc_printstring p t);
attr_array = (sec_attr _enc_str array t *)malloc(str_size);
attr_array->num_strings = num_strings;
for(i=0; i<(num_strings-1); i++) {
attr_array->strings[i] =
data_ptr->attr value.tagged union.string_array->strings[i];

}
dced_ing_id(dced _bh, "NEWERprinter", &entry uuid, &status);

uuid_to_string(&entry_uuid, &string_uuid, &status);
sprintf(temp_string, "%s %s", string_uuid, "/path/and/program/to/run");
attr_array->strings[num strings-1] = (dced_string_t) (temp_string);
data_ptr->attr_value.tagged_union.string_array = attr_array;

attr_Tist.count = 1;
attr _list.list = (sec_attr_t *)malloc(attr_list.count * sizeof(sec_attr t));
attr_list.list = data_ptr;
dced_hostdata_write(dced_bh,
&dced_g uuid_hostdata_post_proc,
gattr_list,
&status);

dced_objects_release(dced _bh, 1, (voidx)(data_ptr), &status);
dced_binding_free(dced_bh, &status);

The example is described as follows:

dced_binding_create() This routine creates a dced binding to the hostdata service on a specified host.
The binding handle created is used in all subsequent calls to appropriate dced
API routines. The dced_c_service_hostdata argument is a constant string
that is the well-known name of the hostdata service. When this string is used
by itself, it refers to the service on the local host.

dced_hostdata_read() This routine reads the hostdata item referred to by the entry UUID. In this
example, the global variable dced_g_uuid_hostdata_post_proc represents
the UUID for the well-known post_processors file. The second parameter
specifies an attribute for the data. Attributes describe how the data is to be
interpreted. In this example we know the data to be read is plain text so we
use the global variable dced_g_uuid_fileattr to specify plain text rather than
binary data (dced_g_uuid_binfileattr).

Create New Array The next few lines copy the existing array of print strings into a new array that
has additional space allocated for the new data.

dced_ing_id() This routine acquires the UUID dced maintains for a known entry name. In this
example, we need the UUID for the NEWERprinter hostdata entry, so it can be
included in the data stored back in the post_processors file.

uuid_to_string() This routine returns the string representation of a UUID. Each line in the
post_processors file contains a string UUID and a program name for dced to
run if the hostdata entry referred to by the UUID changes. The next few lines
create a new string containing the string UUID and a program name, adds the
new string to the new array, and reassigns the new array to the old data
pointer.

Chapter 2. DCE Host Services 17

dced_hostdata_write() Since hostdata could have more than one attribute associated with each entry,
the data must be inserted in an attribute list data structure before the
dced_hostdata_write() routine is called. In the case of the well-known
post_processor hostdata object, the attribute is for a plain text file. The
dced_hostdata_write() routine replaces the old data with the new data for the
hostdata entry represented by the entry UUID.

dced_objects_release() Each call to the dced_hostdata_read() routine requires a corresponding call to
dced_objects_release() to release the resources allocated.

dced_binding_free() Each call the dced_binding_create() routine requires a corresponding call to
dced_binding_free() to release the resources allocated.

The post_processors data for this deed now contains an additional string with a UUID and program name.
If the hostdata item represented by the UUID for NEWERprinter is changed, dced automatically runs the
program.

Note: In z/OS UNIX System Services if the post processor program is a shell script, the first two
characters of the file must be # 1. They should be entered using the same code page that DCEKERN will
be using at the time the post-processor is executed.

If DCEKERN requires a code page other than IBM-1047, use the z/OS iconv command to convert
lopt/dcelocal/bin/dcecf_postproc to the new code page before starting DCEKERN. As initially installed,
dcecf_postproc (a post-processor shell script) is in the IBM-1047 code page. See the[zZ0S UNIX|
[System Services Command Reference, SA22-7802, for information on the iconv command.

The shell (/bin/sh) will be invoked to execute the script. stdin, stdout, and stderr will not be open and
the post-processor program must open them as necessary, for example, by using redirection with a shell
script to route output to an HFS file.

Controlling Servers Remotely

Both applications developers and system administrators may want servers to have certain support services
and control functionality. For example, servers may need mechanisms to store operational data, and they
may need to start or stop in various ways. The dced program provides these support and control
mechanisms for servers.

Servers are typically configured by an administrator using the dcecp server object in a script after the
server is installed on the host. In addition to configuring the server, this script would commonly include
other tasks like create an account and assign a principal name for the server, modify the access control
lists (ACLs) and key table files (keytabs) to control access to the server and its resources, and export the
server binding information to the Cell Directory Service (CDS) so that clients can find a server that will
start dynamically later.

After a server is configured, whether it runs as a persistent daemon or an on-demand (dynamic) process,
administrators would again use dcecp if they need to control or modify its behavior. Although server
management is typically an administrator's task, you may want a management application to perform these
tasks, including the following:

¢ Configure a server to describe how it can be invoked

e Start a server based on configuration data

e Stop a running server

¢ Disable a specific service provided by a running server

¢ Enable a specific service for a running server

18 Application Development Guide: Core Components

¢ Modify a server's configuration

¢ Delete a server's configuration, effectively removing the server from dced's control

Two States of Server Management: Configuration and Execution

If all servers ran as persistent processes, dced could maintain data about each server in a single (albeit
complex) data structure. However, due to the fact that some servers may run on-demand, it is a more
flexible design to have two sets of data: one that describes the default configuration to start the server,
and one that describes the executing (running) server. Earlier in this chapter when we described dced
service naming, we defined srvrconf and srvrexec objects to name the two portions of the server
management service.

Table 1 lists the routines applications can use to control servers. It also shows the valid object names to
use when establishing a dced binding prior to using the routine.

Table 1. API Routines for Remote Server Management

API Routine Service Name for Binding
dced_server_create() srvrconf
dced_server_start() srvrconf
dced_server_disable_if() srvrexec
dced_server_enable_if() srvrexec
dced_server_stop() srvrexec
dced_object_read() srvrexec or srvrconf
dced_object_read_all() srvrexec or srvrconf
dced_server_modify_attributes() srvrconf
dced_server_delete() srvrconf

Configuring Servers

Although administrators commonly use dcecp to configure servers remotely, management applications
can use dced API routines to configure a new server remotely by creating server configuration data,
changing a remote server's configuration, and deleting a server's configuration data.

Configuring a New DCE Server: Management applications use the dced_server_create()
routine to add a new server to a host. After a server is configured, it can be remotely controlled by
modifying its configuration attributes, starting and stopping it, enabling or disabling the RPC interfaces it
supports, and deleting its configuration.

Configuring the server involves describing the server for DCE by allocating and filling in a server_t data
structure, as shown in the following example. Note that not all server_t fields are assigned values in the
following example:

int is

dced_binding_handle_t dced_bh;

server_t conf, exec;

dced_string_t server_name;

uuid_t srvrconf_id, srvrexec_id;
dced_attr_Tist_t attr_Tist;

error_status_t status;

static service_t nil_service;

Chapter 2. DCE Host Services 19

dced_binding_create("srvrconf@hosts/somehost",
dced_c_binding_syntax_default,
&dced_bh,
&status);
dced_ing_id(dced_bh, server_name, &srvrconf_id, &status);
if(status == error_status_ok) {
puts("Configuration already exists for this server.");
dced_binding_free(dced_bh, &status);

return;
}
/* setup a server_t structure */
uuid_create(&(conf.id), &status);
conf.name = server_name;

conf.entryname (dced_string_t)"/.:/greeter";
conf.services.count = 1;

/* __ _service_t structures represent each interface supported _ */
conf.services.list =
(service_t *)malloc(conf.services.count * sizeof(service_t));
for(i=0; i<conf.services.count; i++) {
rpc_if_ing_id(greetif vl 0 _c_ifspec,
&(conf.services.list[i].ifspec),

&status);
conf.services.list[i] = nil_service;
conf.services.list[i].ifname = (dced_string_t)"greet";
conf.services.list[i].annotation = (dced_string_t)"The greet application";
conf.services.list[i].flags = 0;
}
/* server_fixedattr_t structure */

conf.fixed.startupflags =

server_c_startup_explicit | server c_startup on failure;
conf.fixed.flags = 0;
conf.fixed.program = (dced_string_t)"/server/path/and/program/name";

dced_server_create(dced_bh, &conf, &status);
dced_binding_free(dced_bh, &status);

dced_binding_create() To configure a server, the application must first create a dced binding to the
srvreconf portion of the server management service on a specified host. The
binding handle created is used in all subsequent calls to appropriate dced API
routines.

dced_ing_id() This routine returns the UUID that dced associates with the name input. Each
configured server has an associated UUID used by dced to identify it. This
example does not try to create a configuration for a server that already exists.

Setup a server_t Structure for the Server
The server_t structure contains all the information DCE uses to specify a server.

Setup service_t Structures for each Interface
Each service that the server supports is represented by a service_t data
structure which contains the interface specification among other things. In this
example, the client stub for the interface was compiled with the program so that
the interface specification (greetif vl 0 c_ifspec) could be obtained without
building the structure from scratch.

Setup a server_fixedattr_t Structure
Other fixed attributes required for all servers describe how the server can start,
the program path and name for the server so that dced knows which program to
start, and the program's arguments, among other things.

20 Application Development Guide: Core Components

Note: In z/OS UNIX System Services if the program is a shell script, the first
two characters of the file must be # !. They should be entered using the same
code page that DCEKERN will be using at the time the program is executed.
The shell (/bin/sh) will be invoked to execute the script. stdin, stdout, and
stderr will not be open and the post-processor program must open them as
necessary, for example, by using redirection with a shell script to route output to
an HFS file.

dced_server_create() This routine uses the filled-in server_t structure to create a srvrconf entry for
dced. The data is stored in memory for quick access whenever the server is
started.

dced_binding_free() Each call to the dced_binding_create() routine requires a corresponding call to
dced_binding_free() to release the binding resources allocated.

Modifying a Server's Configuration Attributes: The data for configuring servers includes
arrays of attributes. For flexibility, the dced is implemented using the extensible and dynamic data
structures developed for the DCE security registry attributes. This extended registry attribute (ERA)
schema gives vendors the flexibility to modify the attributes appropriate for configuring servers on various
systems. The use and modification of these data structures are described in [Chapter 29, “The Extended|
[Attribute Application Program Interfaces” on page 465

Applications commonly use dced_server_modify_attributes() after the dced_server_create() routine to
change the default configuration attributes (the attributes field of a server_t structure) for a remote
server. A dced_attr_list_t data structure is input which contains an array of sec_attr_t data structures
and a count of the number in the array.

Deleting a DCE Server: Management applications use dced_server_delete() to delete a server's
configuration data and entry in its hosts dced. Although this does not delete the actual server program
from the host, it removes it from DCE control.

Starting and Stopping Servers

Servers typically run as persistent processes or are started on demand when a client makes a remote
procedure call to it. Management applications can start remote servers using the dced_server_start()
routine. This is a srvrconf routine that takes as input server configuration data in the form of an attribute
list.

Once a server has started, it tends to remain running until an administrator or management application
stops it, but some applications may stop themselves if, for example, they do not detect activity within a
specified time. To stop remote servers, applications can use the dced_server_stop() routine.

The following example shows how an application starts or stops a server:
dced_binding_handle_t dced_bh, conf_bh, exec_bh;

server_t conf, exec;

dced_string_t server_name;

uuid_t srvrconf_id, srvrexec_id;
error_status_t status;

/* Toggle the Starting or Stopping of a Server */
dced_binding_create("srvrconf@hosts/somehost",
dced_c_binding_syntax_default,
&conf_bh,
&status);

Chapter 2. DCE Host Services 21

dced_binding_create("srvrexec@hosts/somehost",
dced_c_binding_syntax_default,
&exec_bh,
&status);
dced_ing_id(exec_bh, server_name, &srvrexec_id, &status);
if(status != error_status_ok) {
puts("Server is NOT running.");
dced_ing_id(conf_bh, server name, &srvrconf_id, &status);
dced_server_start(conf_bh, &srvrconf_id, NULL, &srvrexec_id, &status);
}

else {
puts("Server is RUNNING.");
dced_server_stop(exec_bh, &srvrexec_id, srvrexec_stop_soft, &status);

}
dced_binding_free(conf_bh, &status);
dced_binding_free(exec_bh, &status);

dced_binding_create() These routines create dced bindings to the srvrconf and srvrexec portions of
the server management service on a specified host. The binding handles
created are used in all subsequent calls to appropriate dced API routines.

dced_ing_id() This routine returns the UUID that dced associates with the name input. Each
name used to identify an object of each service has a UUID. If dced maintains
a UUID for a srvrexec object, the server is running. However, it is possible
that the server is in an in-between state as it is starting up or shutting down.
For a more robust check as to whether the server is running, use the
dced_object_read() routine to read the server_t structure for the srvrexec
object. If the exec_data.tagged union.running_data.instance UUID is the
same as the srvrconf UUID (srvrconf_id), the server is running.

dced_server_start() This routine starts the server via dced. The srvrconf binding handle and UUID
are input. For special server configurations, you can start a server with a
specific list of attributes, but a value of NULL in the third parameter uses the
attributes of the server configuration data. You can input a srvrexec UUID for
dced to use, or allow it to generate one for you.

dced_server_stop() This routine stops a running server identified by its srvrexec UUID.

dced_binding_free() Each call to the dced_binding_create() routine requires a corresponding call to
dced_binding_free() to release the binding resources allocated.

Enabling and Disabling Services of a Server

Most servers have all their services enabled to process all requests. However, a server may need to
enable or disable services to synchronize them, for example. For another example, an administrator (or
management application) may need to disable or enable services to perform orderly startup or shutdown
of a server. Each service provided by a server is implemented as a set of procedures. DCE uses an
interface definition to define a service and its procedures, and application code refers to the interface
when controlling the service.

When a server starts, it initializes itself by registering with the RPC runtime and the deced on its host
using the dce_server_register() routine. This enables all services (interfaces) that the server can
support.

Note: The dce_server_disable_if() and dce_server_enable_if() routines are not supported when
targeted at DCE hosts running on z/OS. If you wish to have clients that already know about the server
and service work, but wish to prohibit any new clients from finding the server and service, you can use
rpc_mgmt_ep_unregister() to remove from the endpoint map the server address information with
respect to the service. This routine does not affect the RPC runtime.

22 Application Development Guide: Core Components

Validating the Security Server

The security validation service (secval) has the following major functions:

¢ [t maintains a login context for the host's self identity which includes periodic changes to the host's key
(password).

¢ |t validates and certifies to applications, usually login programs, that the DCE Security Daemon (secd)
is legitimate.

Clients (including remote clients, local servers, host logins, and administrators) all need the security
validation service to make sure the DCE Security Daemon (secd) being used by the host is legitimate.
The security validation service establishes the link in a trust chain between applications and secd, so that
applications can trust the DCE security mechanism.

An application can trust its host's security validation service because they are on the same host, but an
application has no way to convince itself that secd, presumably on another host, is genuine. However, if
the application trusts another principal (in this case the security validation service), which in turn trusts
secd, then the trust chain extends from the application to secd.

Typically, a login program accesses the security validation service when it uses the Security Service's
Login API, described in [Chapter 30, “The Login Application Program Interface” on page 495|
Administrators access the secval service by using dcecp's secval object. However, suppose you are
writing a security monitoring application to watch for and respond to security attacks. After the application
binds to the secval service, it can call the dced_secval_validate() routine to verify that the secd is
legitimate.

Applications can also use the dced_secval_start() and dced_secval_stop() routines to start and stop the
security validation service on a given host.

For example, during configuration of a host, the deed program can start with or without the security
validation service. Later when security is configured, a management application can start secval using
the dced_secval_start() routine. For another example, suppose our security monitoring application
mentioned earlier suspects an attack. The application can call dced_secval_stop() to stop the security
validation service without stopping the entire dced. This makes the login environment more restrictive.

Managing Server Key Tables

Keys for servers are analogous to passwords for human users. Keys also play a major role in
authenticated remote procedure calls. Keys have some similarities with passwords. For example, server
keys and user passwords have to follow the same change policy (or a more stringent one) for a given host
or cell. This means that just as a user has to periodically come up with a new password, a server has to
periodically generate a new key. It is easy to see that a human user protects a password by memorizing
it. But a server memorizes a key by storing it in a file called a key table.

It is more complex for a server to change keys than it is for a human user to change a password. For
example, a human user needs to only remember the latest password, but a server may need to maintain a
history of its keys using version numbers, so that currently active clients do not have difficulty completing a
remote procedure call. When a client prepares to make authenticated remote procedure calls, it obtains a
ticket to talk with the server. (The security registry of the authentication service encrypts this ticket using
the server's key, and later the server decrypts the ticket when it receives the remote procedure call.)
Timing can become an issue when a client makes a remote procedure call, because tickets